

One-Pot Synthesis of Mixed Superphanes with CpCo-Capped Cyclobutadiene- and Cyclopentadienone Rings

Rolf Roers, Frank Rominger and Rolf Gleiter*

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany Received 10 January 1999; accepted 25 February 1999

Abstract: A one-pot synthesis of mixed superphanes is reported in which CpCocapped cyclobutadiene- and cyclopentadienone rings are connected by four pentamethylene and four heptamethylene chains, respectively. © 1999 Elsevier Science Ltd. All rights reserved.

Cyclophanes in which two cyclic conjugated π -systems face each other are ideal models for studying the interactions of two π -systems as a function of distance and intervening σ -skeleton. For this reason a simple access to these systems is desirable. We here report a one-pot synthesis of cyclophanes consisting of one CpCo-capped cycloputadiene system and one CpCo-capped cyclopentadienone system which are connected by four pentamethylene and four heptamethylene chains, respectively. The motivation for this study goes back to our recent report on the stepwise synthesis of 4 from 5-cyclodecynone (1) and dicarbonyl(η^5 -cyclopentadienyl)cobalt (CpCo(CO)₂) as summarized in Scheme 1.4

Scheme 1

In order to obtain congeners of **4** in which the π -systems are further apart we went back to earlier investigations⁵ which revealed a one-pot synthesis of CpCo-capped cyclobutadiene-superphanes, when heating 1,6-cyclodecadiyne⁶, 1,8-cyclotetradecadiyne (**5**),⁷ and 1,10-cyclooctadecadiyne (**6**) with CpCo(CO)₂.⁸ Heating of **5** and **6** with CpCo(CO)₂ at 140 °C in xylene for five days afforded the superphanes **7**⁹ and **8**⁹, respectively, in 5 % yield (s. Scheme 2).

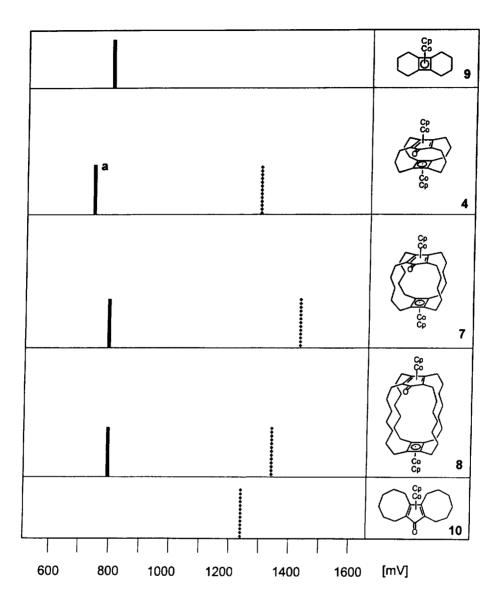



Figure 1. Molecular structure of 810

An X-ray investigation of single crystals of 8 (Figure 1)¹⁰ reveals that the centers of the two π -units are slipped by 2.3 Å. The separation between the centers of both parallel planes amounts to 7.2 Å. This slipped arrangement of both π-units reminds to the molecular structure of the CpCo-capped bis(cyclobutadiene)superphane with four heptamethylene bridges8. In this case X-ray investigations revealed that one of the two independent molecules in the unit cell shows a similar molecular structure as 8. By means of cyclic voltammetry (CV) we studied the interactions between the two π-units in the mixed superphanes 4,7 and 8 (Figure 2)13. For comparison we also included in our studies the CV data of 9 and 10. Only the first oxidation potentials below 1000 mV were reversible. A comparison between the first oxidation potentials of 4,7,8 and 9 shows that those of 7 and 8 are not influenced by the CpCo-complexed cyclopentadienone ring. We ascribe this to the large distance between both π -units in 7 and 8. However, in 4, where the distance between the π-units amounts to 3 Å, the first oxidation potential is shifted to lower values compared to 9. These findings parallel those reported for the CpCo-capped bis(cyclobutadiene) superphanes¹⁴. Due to the irreversibility of the oxidation process above 1200 mV it seems not appropriate to draw any conclusion from these data.

^a reversible for 0-1000 mV; irreversible for 0-1500 mV

Figure 2. Comparison between the CV data of 4,7,8,9 and 10. The full bars represent reversible potentials, the broken bars irreversible potentials.

We are grateful to the *Deutsche Forschungsgemeinschaft*, the *Fonds der Chemischen Industrie* and the *BASF Aktiengesellschaft*, Ludwigshafen, for financial support.

References

- ¹ Keehn, P.M.; Rosenfeld, S. M. Cyclophanes, Academic Press, New York, 1983.
- ² Vögtle, F. Cyclophane Chemistry, Synthesis, Structures and Reactions, Wiley, Chichester, 1993.
- Diederich, F. Cyclophanes, The Royal Society of Chemistry, 1991.

- ⁴ Roers, R.; Rominger, F.; Braunweiler, C.; Gleiter, R. Tetrahedron Lett. 1998, 39, 7831-7834.
- ⁵ Reviews: Gleiter, R.; Kratz, D. Acc. Chem. Res. 1993, 26, 311-318; Gleiter, R.; Merger, M. Angew. Chem. 1997, 104, 2532-2546; Angew. Chem. Int. Ed. Engl. 1997, 36, 2426-2439.
- ⁶ Gleiter, R.; Karcher, M.; Ziegler, M.L.; Nuber, B. Tetrahedron Lett. 1987, 28, 195-198.
- Gleiter, R.; Treptow, B.; Kratz, D.; Nuber, B. Tetrahedron Lett. 1992, 33, 1733-1736.
- ⁸ Gleiter, R.; Pflästerer, G; Nuber, B. J. Chem. Soc. Chem. Commun. 1993, 454-456.
- Most relevant analytical data 7 and 8.
 - 7: $C_{39}H_{51}Co_2O$ [M+H], calc. 653.2604, found 653.2608. ¹H NMR (500 MHz, CDCl₃): δ = 4.58 (s, 5H), 4.39 (s, 5H), 2.93 2.88 (m), 2.73 2.68 (m), 2.62 2.57 (m), 2.30 2.21 (m), 2.14 2.02 (m), 1.68 1.52 (m), 1.44 1.37 (m), 1.31 0.84 (m) (together 40H). ¹³C NMR (125 MHz, CDCl₃): δ = 154.9 (s), 93.2 (s), 85.6 (s) 84.0 (d), 81.7 (s), 81.6 (d), 79.7 (s), 30.7 (t), 30.0 (t), 29.4 (t), 27.8 (t), 27.7 (t), 27.3 (t), 26.6 (t), 26.2 (t), 26.1 (t), 23.9 (t).
 - **8**: $C_{47}H_{67}Co_2O$ [M+H], calc. 765.3856, found 765.3828. 1H NMR (300 MHz, CDCl3): δ = 4.55 (s, 5H), 4.43 (s, 5H), 2.92 2.85 (m), 2.40 2.37 (m), 2.22 1.87 (m), 1.42 1.11 (m), 0.89 0.85 (m) (together 56H). ^{13}C NMR (75 MHz, CDCl₃): δ = 156.8 (s), 92.4 (s), 82.8 (d), 81.8 (s), 80.1 (d), 79.3 (s), 78.9 (s), 31.4 (t), 31.0 (t), 30.9 (t), 30.5 (t), 30.1 (t), 29.5 (t), 28.2 (t), 27.6 (t), 27.0 (t), 26.8 (t), 26.5 (t), 26.1 (t), 24.4 (t).
- 8: $C_{49}H_{76}Co_2O_4$, M = 846.96, crystal dimensions 0.3x0.2x0.1 mm³, crystal system monoclinic, space group P2₁/c, Z = 4, a = 22.3360(5), b =9.4181(1), c = 22.4097(5), β = 103.947(10), V=4575.19(15) A³, F(000) = 1824, ρ_{calc} = 1.23 g/cm³, $2\Theta_{max}$ = 51.2°. Radiation Mo Kα, λ = 0.71073 Å, 0.3° ω-scans with CCD area detector, T = 200K, 33004 reflections measured, 7963 unique, 5808 observed (I > 2σ(II)), intensities were corrected for Lorentz and polarisation effects, an empirical absorption correction was applied using SADABS¹¹ based on the Laue symmetry of the reciprocal space, μ = 77 mm¹, T_{min} = 0.85, T_{max} = 0.94, structure solved by direct methods and refined against F² with a full matrix least-squares algorithm using the SHELXTL Plus (5.03) software package, T_{max} = 556 parameters refined. Hydrogen atoms were treated using appropriate riding models, final residual values R(F) = 0.047, wR(F²) = 0.103, residual electron density -0.46 to 0.52 e/ A³. Details of the crystal structure determinations of 8 may be obtained from the Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield Road, Cambridge CB 21 E10 (UK) on quoting the full journal citations.
- Sheldrick, G. M. 1996, unpublished work, based on the method described in Blessing, R. H. Acta Crystallographica, Sect. A, 1995, 51, 33.
- ¹² Sheldrick, G. M. Bruker Analytical X-ray Division, Madison, WI 1995.
- The electrochemical measurements were performed with the METROHM potentiostat system PGSTAT20. As working electrode a METROHM disc electrode was used (diameter = 0.3 cm, glassy carbon). The Ag/AgCl reference electrode was separated from the solution by a fine grit and a luggin capillary. As electrolyte a 0.1 M solution of (*n*-Bu)₄N⁺PF₆ in CH₂Cl₂ was used. The potential of the ferrocene/ferrocenium (Fc/Fc⁺) system was recorded at 721 mV with an error of ±0.5 mV vs. Ag/AgCl. All measurements were recorded at v = 100 mV/s.
- ¹⁴ Gleiter, R.; Röckel, H.; Pflästerer, G.; Treptow, B.; Kratz, D. Tetrahedron Lett. 1993, 34, 8075.